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Abstract
We investigate electronic transport through a parallel double quantum dot (DQD) system with
strong on-site Coulomb interaction and capacitive interdot coupling. By applying the numerical
renormalization group (NRG) method, the ground state of the system and the transmission
probability at zero temperature have been obtained. For a system of quantum dots with
degenerate energy levels and small interdot tunnel coupling, the spin correlations between the
DQDs is ferromagnetic and the ground state of the system is a spin-1 triplet state. The linear
conductance will reach the unitary limit (2e2/h) due to the underscreened Kondo effect at low
temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from
ferromagnetic to antiferromagnetic spin correlation in DQDs and the linear conductance is
strongly suppressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years considerable research attention has been paid
to electron transport through double quantum dot (DQD)
systems [1], which are artificial small quantum systems that
can be readily controlled by external gate voltage and also
exhibit a variety of interesting strongly correlated electron
behaviors. Basically, there are two different experimental
realizations of DQD systems: DQDs connected in serial [2]
or in parallel configurations [3]. Electron transport through
both configurations has been studied in experiments, and the
molecular states of the double dots and also the competition
between the Kondo effect and the RKKY interaction have been
observed [2, 3].

The theoretical studies on electron transport through
DQDs are largely devoted to the system in the Kondo
regime. For DQDs connected in serial, the antiferromagnetic
correlations between two single-level coupled QDs are in
competition with Kondo correlations between the QDs and the
electrons in the leads. Therefore it gives rise to rich ground
state physical properties at zero temperature [4–7]. For DQDs

with large capacitive coupling, the simultaneous appearance of
the Kondo effect in the spin and charge sectors results in an
SU(4) Fermi liquid ground state [8]. By increasing interdot
capacitive coupling, a quantum phase transition of Kosterlitz–
Thouless-type to a non-Fermi-liquid state with anomalous
transport properties is predicted [9]. Martins et al argued that
the ferromagnetic state cannot be realized in two single-level
QDs connected in serial, but they predict that the FM state can
be developed in two double-level QDs [10]. For the DQD
system in parallel configuration, the physical properties can
be quite different, since the interference effect will play an
important role in its transport properties. The Fano effect for
electron transport through bonding and antibonding channels
in the DQD system has been studied [11–13].

Due to the strong correlation of electrons in the QDs, it
is a non-trivial problem to treat those systems theoretically.
It is well known that Wilson’s numerical renormalization
group [14–17] method is a nonperturbative approach to the
quantum impurity problem, which can take into account the
on-site Coulomb repulsion and the spin exchange interaction
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between the electrons in DQDs exactly, in contrast to the slave
boson mean-field theory or the equation of motion method
within the Hartree–Fock approximation. The NRG method
has already been applied to investigate a lot of problems
in the electron transport through QD systems: for instance,
DQDs connected in serial [18], the quantum phase transition
in multilevel QD [19], Kondo effect in coupled DQDs with
RKKY interaction in external magnetic field [20], the side-
coupled DQD system [21, 22], quantum phase transitions in
parallel quantum QDs [23], etc. However, in our opinion
the consequences of the interplay of Fano resonance and
the Kondo effect on electron conductance through DQDs in
parallel still have not been well elucidated. In this paper
we will investigate the electron transport properties for the
DQDs in parallel configuration by using the NRG method.
We will show that, for DQDs without interdot tunneling,
the underscreen Kondo effect plays an essential role in the
conductance. The linear conductance, spin correlation and
local density of state in this system are obtained.

2. The model Hamiltonian and the NRG approach

Electron transport through parallel coupled DQDs with
interdot tunneling, on-site Coulomb interaction and capacitive
interdot coupling can be described by the following two-orbital
Anderson impurity model:

H =
∑

kησ

εkηc†
kησ ckησ +

∑

iσ

εi d
†
iσ diσ +

∑

i

Uni↑ni↓ + V n1n2

+ tc
∑

σ

(d†
1σ d2σ + d†

2σ d1σ ) +
∑

kησ i

(vηi d
†
iσ ckησ + h.c.), (1)

where ckησ (c†
kησ ) denote annihilation (creation) operators for

electrons in the leads (η = L, R) and diσ (d†
iσ ) those of the

single-level state in the i th dot (i = 1, 2). niσ denotes the
electron number operator with spin index σ in the i th dot
and ni = ∑

σ niσ . U is the intradot Coulomb interaction
between electrons, V is the interdot capacitive coupling. tc

is the interdot tunnel coupling and vηi is the tunnel matrix
element between lead η and dot i . It should be noted that an
interdot magnetic exchange term J is not explicitly included in
this Hamiltonian since it is not an independent parameter but a
function of the interdot tunneling (J ∼ t2

c /U ). We consider
the symmetric coupling case with �L

i = �R
i = �i , where

�
η

i = 2π
∑

k |vηi |2δ(ω − εkησ ) is the hybridization strength
between the i th dot and the lead η.

In order to access the low energy physics of this
DQD system, we adopt Wilson’s NRG approach. By
symmetric combination of the lead orbitals, the Hamiltonian in
equation (1) can be mapped to a single-channel two-impurity
Anderson model. Because the antisymmetric combination of
lead orbitals are totally decoupled with the QDs, they can be
neglected in the Hamiltonian. Following the standard NRG
method, one defines a series of rescaled Hamiltonian HN as
follows:

HN = 	(N−1)/2

[ N−1∑

σ,n=0

	−n/2ξn( f †
nσ fn+1σ + f †

n+1σ fnσ )

+
∑

iσ

(ε̃i + 1
2 Ũ)d†

iσ diσ + 1
2Ũ

∑

i

(ni − 1)2

+ Ṽ n1n2 + t̃c
∑

σ

(d†
1σ d2σ + d†

2σ d1σ )

+
∑

iσ

�̃i
1/2

( f †
0σ diσ + d†

iσ f0σ )

]
, (2)

where 	 is the renormalization parameter and ξn ≈ 1 [17].
The other parameters are ε̃i = 2

1+	−1
εi
D , Ũ = 2

1+	−1
U
D ,

Ṽ = 2
1+	−1

V
D , t̃c = 2

1+	−1
tc
D and �̃i = ( 2

1+	−1 )
2 �i

π D , with D
being the bandwidth of electrons in the leads. The above one-
dimensional lattice model is iteratively diagonalized by using
the recursion relation:

HN+1 = 	1/2 HN + ξn

∑

σ

( f †
Nσ fN+1σ + f †

N+1σ fNσ ). (3)

The basis set in each iteration step is truncated by retaining
only those states with low-lying energies. In our numerical
calculation, we take into account the spin SU(2) symmetry
group and keep a total of 600 low-lying energy states in each
step without counting the Sz degeneracy.

The current formula through the DQDs is given by the
generalized Landauer formula [24]:

I = e

h

∑

σ

∫
dω [nL(ω) − nR(ω)]T (ω), (4)

where the transmission probability T (ω) = −Tr[�̂ Im[Ĝr(ω)]],
with �̂ = �̂L = �̂R = ( �1

√
�1�2√

�1�2 �2

)
. The retarded/advanced

Green’s functions (GF) Ĝr/a(ω) have 2 × 2 matrix structures,
which account for the double dot structure of the system. The
matrix elements of the retarded GF are defined in spacetime
as Gr

i j(t − t ′) = −iθ(t − t ′)〈{diσ (t), d+
jσ (t ′)}〉. Therefore,

the transmission probability T (ω) can be obtained by calcu-
lating the imaginary parts of the GF of DQDs or the spec-
tral density ρi j(ω) = − 1

π
Im Gr

i j(ω). Then, the linear con-
ductance at absolute zero temperature can be given by tak-
ing the zero-frequency limit of the transmission probability
G = dI

dV |V =0 = 2e2

h T (ω = 0). One advantage of the NRG
is accurate determination of the low energy spectral density
of the quantum impurity models. By a standard procedure in
NRG [17], the spectral density at zero temperature can be cal-
culated according to the following formula:

ρi j(ω) = 1

Z(0)

∑

λ

Mi
0,λ(M j

0,λ)
∗δ(ω − (Eλ − E0))

+ 1

Z(0)

∑

λ

Mi
λ,0(M j

λ,0)
∗δ(ω + (Eλ − E0)) (5)

where the matrix element Mi
λ,0 = 〈λ|diσ |0〉, with |0〉 and |λ〉

being the ground state and excited eigenstate of the impurity
model Hamiltonian, respectively.

3. Results and discussions

In the following, we will present the results of our NRG
calculation. For the sake of simplicity, we only consider
the symmetric coupling case with the hybridization strength
�1 = �2 ≡ �. It should be noticed that for QD with multi-
orbitals the hybridization strength usually corresponds to the
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Figure 1. (a) The electron occupation number 〈ni 〉 in each quantum
dot as a function of the gate voltage εd . �εd/� = 0 (solid line); 2.0
(dashed line). The other parameters used are D = 1.0, tc = 0,
� = 0.01, U/� = 10 and V = U/2; (b) the interdot spin correlation
〈S1 · S2〉 as a function of the gate voltage εd .

asymmetry coupling case in the experiment. Since the physical
properties in the asymmetric coupling case can be quite rich
and different from the symmetric coupling case, we will restrict
our calculation to the symmetric coupling case in the present
paper.

We take the bandwidth D = 1 as the energy unit, the
renormalization parameter 	 = 1.5, and the other parameters
� = 0.01, U = 10� and V = U/2. One can define the
averaged energy level of QDs as εd = (ε1 + ε2)/2, and the
energy level difference �εd = ε2 − ε1. Both of them can be
tuned experimentally by external gate voltages.

At first, we consider DQDs without interdot tunneling
(tc = 0). In figure 1(a) the occupation number of electrons 〈ni 〉
in each QD is plotted as a function of the average energy level
εd . The electron occupation number increases consecutively
by tuning the QD level below the Fermi energy. For this DQDs
with interdot capacitive interaction, one can easily discern the
different regions of occupation states: from empty occupation
to the state with a total of four electrons in DQDs. In the case of
two identical QDs (�εd = 0), abrupt jumps of the occupation
number are observed at some particular gate voltage. One
can see that the position of jumps can be identified as the
region where the DQDs have odd numbers of electrons. For
DQDs with different energy levels (�εd �= 0), the QD with
low energy level is occupied first, and because of interdot
capacitive interaction, it will greatly suppress the occupation of
electrons in another QD compared with the two identical QDs’
case. The interdot spin correlation 〈S1 · S2〉 as a function of
energy level εd is shown in figure 1(b), where the spin operators
in the i th QD are defined by Si = 1/2

∑
σσ ′ d†

iσ σ σσ ′diσ ′ . It
shows that the interdot spin correlation is antiferromagnetic in
the mixed valence regime and is ferromagnetic in the doubly
occupied regime, where each QD is occupied by one electron.
For DQDs with energy level difference, the spin correlation
in the mixed valence regime is greatly suppressed, but there
are still large ferromagnetic spin correlations in the doubly
occupied regime. In the identical QDs’ (�εd = 0) case,

Figure 2. The linear conductance G as a function of the dot level at
zero temperature. (a) For the system with two identical quantum dots
(�εd = 0); (b) for DQDs with energy level difference
(�εd/� = 2.0). The interdot tunneling parameter takes tc/� = 0
(solid line) and tc/� = 2.0 (dashed line), respectively.

the abrupt jumps in occupancy and the spin correlation turn
from FM to AFM have also been found in [23] for the N-
QD system (N � 2) without interdot capacitive coupling, and
this phenomenon is interpreted as a kind of quantum phase
transition. However, one can see from the dashed line in
figure 1 that the abrupt jumps both in occupancy and spin
correlation disappear when �εd �= 0; hence this kind of phase
transition is unstable with respect to the perturbation by gate
voltage difference in QDs. We attribute this kind of abrupt
jump as a result of Fano resonance and the crossing of the
antibonding state energy level with the Fermi energy.

Next, we calculate the electron conductance through
DQDs when a small bias voltage is applied to the leads. In
figure 2 the linear conductance G at zero temperature versus
the average QD energy level εd is depicted. As shown in
figure 2(a), the Kondo effects are manifested by peaks in
the curve of the linear conductance, where the conductances
approach the unitary limit (G = 2e2/h). In the regime of
odd electron occupation, the DQDs act as a localized spin
(s = 1/2) and the Kondo effect arose from the spin exchange
interaction between the localized electron spin and that of the
electrons in the leads. Whereas, in the doubly occupied regime,
the unitary conductance is due to the underscreened spin-1
Kondo effect. It will be shown in the following that in this
regime the two electrons confined in the DQDs form a spin
triplet state in the ground state. In the presence of sufficient
interdot tunneling tc, the Kondo effect in the singly occupied
regime and spin-1 Kondo effect is strongly suppressed, but
some asymmetrical peaks of conductance appear in the mixed
valence regime. This can be attributed to the Fano resonance
for the electron transport through the bonding and antibonding
channels in this system. It is interesting to notice that in
the triply occupied regime the conductance still achieves the
unitary limit even in the presence of strong interdot tunnel
coupling.

In the following, we will focus our attention on the
properties in the doubly occupied regime. In order to illustrate
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the effect of interdot tunneling, the transmission probability
at different tunneling coupling tc is shown in figure 3(a).
Without direct interdot tunneling (tc = 0), one can see that
the transmission probability has the particle–hole symmetry,
and the spin exchange effect between the electrons localized
in the quantum dots and that in the leads gives rise to a
sharp peak in the transmission probability at the Fermi surface.
Therefore the linear conductance at zero temperature reaches
the unitary limit G = 2e2/h as a result of the underscreened
spin-1 Kondo effect. In the presence of the interdot coupling
tc �= 0, the particle–hole symmetry of the transmission
probability is broken. This is due to the following fact: in
equation (2), in the presence of interdot capacitive coupling
and interdot tunneling, the Hamiltonian is not invariant under
particle–hole symmetry operation fnσ → (−1)n f †

nσ , diσ →
−d†

iσ [15]. It is noted that the operator fnσ can be related to the
conduction electron operator ckησ by following the procedure
in [15]. When tc increases beyond a quantum critical point,
a sharp dip in the transmission probability is observed. It
suggests that the Kondo effect and the linear conductance
in this regime is strongly suppressed. Therefore, there is a
quantum phase transition between the underscreened Kondo
phase and the local spin singlet phase in the ground state
of this system. For a two-impurity Anderson model without
interdot capacitive coupling, this quantum phase transition
has been predicted by Nishimoto et al by using the dynamic
density matrix renormalization group [25] and Žitko et al have
obtained its thermodynamic properties, such as the temperature
dependence of magnetic susceptibility and entropy by the
NRG method [26]. It is noted that a similar quantum phase
transition is also observed in the two-level single QD system
with intradot spin exchange coupling by Hund’s rule [19]. For
DQDs with RKKY interaction coupled to a two-channel lead,
Chung et al [20] found the quantum phase transition is from the
Kondo screened phase to the spin singlet phase. In figure 3(a),
by further increasing the interdot coupling tc, a broad peak of
transmission probability with the lineshape of Breit–Wigner
resonance is developed around the energy ω ≈ U/2. We
attribute this broad transmission peak to the electron transport
through the bonding channel of electrons in the quantum dots.

In figure 3(b) the transmission probability T (ω) at
different values of on-site Coulomb interaction U is depicted.
It shows that the lineshape of the T (ω) changes significantly
by varying the Coulomb interaction strength U . The lineshape
becomes more cusplike with decreasing U and it reveals that
the physical properties of this underscreened Kondo effect in
the DQD system is quite different from the spin-1/2 Kondo
effect. For the spin-1/2 Kondo effect in the single-impurity
Anderson model, one can estimate the Kondo temperature TK

by using the formula TK =
√

U�
2 exp[εd(εd + U)/U�]. For

this underscreened Kondo effect case, we make the following
approximation to estimate the Kondo temperature: at the
frequency of ω = TK the transmission probability T (ω =
TK)/T (ω = 0) ≈ 0.978. For the single-impurity Anderson
model, TK obtained by this approximation agrees well with the
above formula. The inset of figure 3(b) shows the estimated
TK at several values of the Coulomb interaction strength U for
the DQD system. For the system with the parameters used in

Figure 3. (a) The transmission probability T (ω) for the system with
two identical quantum dots. Parameters used are D = 1.0, � = 0.01,
U/� = 10, V = U/2 and εd/� = −10.0. The interdot tunnel
coupling tc/� = 0.0, 0.8, 1.0, 1.5, respectively. (b) The transmission
probability T (ω) at the particle–hole symmetric point for different
values of on-site Coulomb interaction U . Inset: the estimated Kondo
temperature TK versus the value of U .

our calculation, the Kondo temperature TK is of the order of
10−5�.

In order to get a better understanding of the electron state
in the system, we investigate the local density of states (DOS)
in the DQDs. One can define the even orbital (bonding state)
operator as de,σ = (d1σ + d2σ )/

√
2 and the odd orbital

(antibonding state) operator de,σ = (d1σ − d2σ )/
√

2. The
local density of state for the bonding and antibonding states
is depicted in figure 4. As shown in figures 4(a) and (c),
in the absence of interdot coupling (tc = 0), the local DOS
of even and odd orbitals retain the particle–hole symmetry
of the system. It is noticed that the transmission probability
is proportional to the DOS for the bonding state; therefore a
Kondo peak around the Fermi energy is observed in its DOS.
Some new features are also manifested in DOS for this system.
One can see that the DOS for the antibonding state has two
side peaks near the Fermi energy, which can be understood
as a result of the effective spin exchange interaction between
the electrons in DQDs by tunneling through the leads, and this
feature cannot be found in DQDs in a serial configuration [18].
As the interdot coupling tc is larger than some critical value
(see figures 4(b) and (d)), the Kondo effect on the DOS of the
bonding state is greatly suppressed and a broad peak around
the energy ω ≈ U/2 is developed. For the DOS of the
antibonding state, a sharp peak is developed slightly below
the Fermi energy. This is due to the fact that the antibonding
state of electrons in DQDs seems like a quasi-localized state.
Increasing the interdot coupling tc further, the sharp peak
is broadened and shifts away from the Fermi surface to a
lower energy. For DQDs with different energy levels, the
characteristic features of the DOS remain unchanged.

To gain more insight into the spin entanglement and the
effect of spin exchange interaction for the electrons localized
in different QDs, we have also calculated the interdot spin
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Figure 4. The density of state of the local bonding and antibonding states in the quantum dot at different values of energy level difference:
�εd/� = 0.0 (solid line), 2.0 (dashed line) and 4.0 (dotted line). (a), (b) correspond to the bonding state with tc/� = 0, 0, 2.0, respectively,
(c), (d) are that of the antibonding states. The other parameters used are the same as in figure 3.

correlation 〈S1 · S2〉 as a function of temperature for several
values of interdot tunneling tc as shown in figure 5(a). When
interdot tunneling tc is zero or has a small value, one can
see that the spin correlation converges to a positive value as
temperature decreases. It is easy to notice that the positive
value of 〈S1 · S2〉 reveals that the spin correlation in this case
is a ferromagnetic type in the ground state. As we know,
when two ideal spin s = 1/2 electrons form a spin triplet,
the spin correlation will be 〈S1 · S2〉 = 1/4. The rather
high positive value of spin correlation indicates that electrons
localized in QDs still have a high probability to form a spin
triplet even though they are coupled with the electrons in
the leads in the Kondo regime. By increasing the interdot
coupling tc, they exhibit a quantum phase transition from the
triplet state to the singlet state in the ground state. The spin
correlation approaches a negative value 〈S1 · S2〉 ≈ −0.50, as
we know that for two electrons forming an ideal spin singlet
〈S1 · S2〉 = −0.75. Therefore the electrons in DQDs are
largely in a singlet state. In order to determine the critical
value of tc, we have calculated the spin correlation 〈S1 · S2〉
at zero temperature for different values of tc. The result is
shown in figure 5(b). We find that, at the quantum critical
point tc ≈ 0.7, there is an abrupt jump of the spin correlation
〈S1 · S2〉. It indicates that the quantum phase transition from
the triplet to singlet state is of first-order kind. According to a
previous study on the two-impurity Kondo model [27], we may
expect that in the case of DQDs with energy level difference,
this kind of first-order transition will become a Kosterlitz–
Thouless type. One may understand this quantum phase as

Figure 5. (a) The spin correlation 〈S1 ·S2〉 of double quantum dots as
a function of temperature T for several different values of tc. (b) The
spin correlation 〈S1 ·S2〉 versus the interdot tunnel coupling tc at zero
temperature. The other parameters used are the same as in figure 3.

follows: by Schrieffer–Wolff-type transformation, one can
obtain the effective Kondo model with antiferromagnetic spin
exchange terms between the electron spin in QDs and that of
the conduction electrons [28, 29]. Therefore the effective spin
coupling between electron spin in two QDs is of ferromagnetic
type. However, the direct interdot tunneling will generate an
antiferromagnetic spin exchange term between electron spin
in QDs. The quantum phase transition can be attributed to
the competition of this antiferromagnetic coupling induced

5
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by direct interdot tunneling with the effective ferromagnetic
coupling induced by tunneling through the leads. It is easy
to understand that the exact quantum critical value of tc will
depend on the interaction parameters, such as the on-site
Coulomb repulsion U , interdot capacitive coupling V , the
energy level εd , etc.

4. Summary

In summary, we have studied the ground state and the electron
transport properties of the system with DQDs in parallel
configuration. The strong on-site Coulomb repulsion and
the interdot capacitive coupling is taken into account by
the nonperturbative NRG technique. It is shown that the
large interdot tunneling will drastically change the transport
properties in this system. The ground state of DQDs exhibits
a quantum phase transition from triplet state to singlet state
by increasing the interdot tunneling amplitude. In the case
of no interdot tunneling, the linear conductance approaches
the unitary limit in the doubly occupied regime due to the
underscreened Kondo effect, whereas it is greatly suppressed
when the electrons in DQDs form a singlet state, with the
interdot coupling tc being larger than the critical value. For the
DQDs with strong interdot tunneling, the Fano resonance can
be observed in the linear conductance when the system is in the
mixed valence regime. One may expect that the underscreened
Kondo effect can be observed in future experiments on the
DQD system without direct interdot tunneling. In the out-
of-equilibrium case, the multi-orbital Anderson model has
interesting physical properties, such as the flanking inelastic
cotunneling steps or peaks in the differential conductance [29].
It is highly expected that further development of the NRG
method can address the nonequilibrium problem of the multi-
orbital Anderson model [30].
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